资源类型

期刊论文 67

年份

2023 6

2022 4

2021 6

2020 1

2019 5

2018 3

2017 11

2016 2

2015 5

2014 1

2013 3

2012 3

2011 3

2010 1

2008 2

2007 3

2006 1

2005 1

2003 1

2002 1

展开 ︾

关键词

多晶硅 3

晶体硅太阳电池 2

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

AD9954 1

M23C6 碳化物 1

Nd-YAG 1

RE-Si3N4 1

SiC绝缘侧壁 1

TRIP钢 1

n-Si 1

三元乙丙橡胶 1

三氣氢硅法 1

下地幔 1

中性原子量子计算 1

串联内阻 1

乳液共聚合 1

位错增殖 1

展开 ︾

检索范围:

排序: 展示方式:

Design and mechanism insight on SiC quantum dots sensitized inverse opal TiO with superior photocatalytic

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1913-1924 doi: 10.1007/s11705-023-2350-8

摘要: The combination of SiC quantum dots sensitized inverse opal TiO2 photocatalyst is designed in this work and then applied in wastewater purification under simulated sunlight. From various spectroscopic techniques, it is found that electrons transfer directionally from SiC quantum dots to inverse opal TiO2, and the energy difference between their conduction/valence bands can reduce the recombination rate of photogenerated carriers and provide a pathway with low interfacial resistance for charge transfer inside the composite. As a result, a typical type-II mechanism is proved to dominate the photoinduced charge transfer process. Meanwhile, the composite achieves excellent photocatalytic performances (the highest apparent kinetic constant of 0.037 min–1), which is 6.2 times (0.006 min–1) and 2.1 times (0.018 min–1) of the bare inverse opal TiO2 and commercial P25 photocatalysts. Therefore, the stability and non-toxicity of SiC quantum dots sensitized inverse opal TiO2 composite enables it with great potential in practical photocatalytic applications.

关键词: inverse opal TiO2     silicon carbide quantum dots     quantum dot sensitized photocatalyst     type-II charge transfer route    

CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating

Longli BO, Jianbo LIAO, Yucai ZHANG, Xiaohui WANG, Quan YANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 395-402 doi: 10.1007/s11783-012-0417-8

摘要: The development of a combined process of catalytic oxidation and microwave heating for treatment of toluene waste gas was described in this work. Toluene, a typical toxic volatile organic compound, was oxidized through a fixed bed reaction chamber containing zeolite-supported copper oxide (CuO/zeolite) catalyst mixed with silicon carbide (SiC), an excellent microwave-absorbing material. The target compound was efficiently degraded on the surface of the catalyst at high reaction temperature achieved by microwave-heated SiC. A set of experimental parameters, such as microwave power, air flow and the loading size of CuO etc., were investigated, respectively. The study demonstrated these parameters had critical impact on toluene degradation. Under optimal condition, 92% toluene was removed by this combined process, corresponding to an 80%–90% TOC removal rate. Furthermore, the catalyst was highly stable even after eight consecutive 6-h runs. At last, a hypothetical degradation pathway of toluene was proposed based on the experimental data obtained from gas chromatography-mass spectrum and Fourier transform infrared spectroscopy analyses.

关键词: microwave     catalytic oxidation     CuO/zeolite catalyst     silicon carbide (SiC)     toluene    

Silicon carbide waste as a source of mixture materials for cement mortar

Zhengwu Jiang, Qiang Ren, Haoxin Li, Qing Chen

《环境科学与工程前沿(英文)》 2017年 第11卷 第5期 doi: 10.1007/s11783-017-0974-y

摘要: This paper presents an investigation of the feasibility of recycling silicon carbide waste (SCW) as a source of mixture materials in the production of cement mortar. Mortars with SCW were prepared by replacing different amounts of cement with SCW, and the properties of the resulting mortars, such as the fluidity, strength and shrinkage, were studied in this work. Thermogravimetry-differential scanning calorimetry and scanning electron microscopy were employed to understand the reasons for the property changes of the mortars. The results indicate that SCW decreases the initial and 1-h fluidity of fresh mortar but improves the loss of fluidity. The mortar with SCW exhibits a lower strength at 3 d and 7 d but a higher strength at 28 d and 56 d compared to the control. The shrinkage rate of cement mortar with SCW shows an obvious decrease as the replacement ratio increases. In addition, the content of calcium hydroxide in hardened paste also shows that SCW has some impact on the hydration of the cement-SCW system. The microstructures of the hardened paste also show evidence for a later strength change of mortar containing SCW. This work provides a strategic reference for possibly applying SCW as a mixture material in the production of cement mortar.

关键词: Silicon carbide waste     Cement mortar     Fluidity     Strength     Shrinkage    

Effect of potassium carbonate on catalytic synthesis of calcium carbide at moderate temperature

Dejun SHI, Ke QIAO, Zifeng YAN

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 372-375 doi: 10.1007/s11705-010-0570-1

摘要: Calcium carbide was successfully synthesized by carbothermal reduction of lime with coke at 1973 K for 1.5 h. The effect of potassium carbonate as additive on the composition and morphology of the product was investigated using X-ray diffraction and scanning electron microscope. Addition of potassium carbonate increased the yield of calcium carbide. The sample in the presence of potassium carbonate generated acetylene gas of 168.3 L/kg, which was 10% higher than that in the absence of potassium carbonate. This result confirmed the catalytic effect of potassium carbonate on the synthesis of calcium carbide. A possible mechanism of the above effects was that the additive, which was melted at the reduction temperature, dissolved CaO and so promoted the contact between CaO and carbon, which was essential for the solid-solid reaction to form calcium carbide.

关键词: calcium carbide     synthesis     catalysis    

Platinum on nitrogen doped graphene and tungsten carbide supports for ammonia electro-oxidation reaction

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 930-938 doi: 10.1007/s11705-021-2130-2

摘要: Ammonia electrooxidation reaction involving multistep electron-proton transfer is a significant reaction for fuel cells, hydrogen production and understanding nitrogen cycle. Platinum has been established as the best electrocatalyst for ammonia oxidation in aqueous alkaline media. In this study, Pt/nitrogen-doped graphene (NDG) and Pt/tungsten monocarbide (WC)/NDG are synthesized by a wet chemistry method and their ammonia oxidation activities are compared to commercial Pt/C. Pt/NDG exhibits a specific activity of 0.472 mA∙cm–2, which is 44% higher than commercial Pt/C, thus establishing NDG as a more effective support than carbon black. Moreover, it is demonstrated that WC as a support also impacts the activity with further 30% increase in comparison to NDG. Surface modification with Ir resulted in the best electrocatalytic activity with Pt-Ir/WC/NDG having almost thrice the current density of commercial Pt/C. This work adds insights regarding the role of NDG and WC as efficient supports along with significant impact of Ir surface modification.

关键词: Ammonia electro-oxidation reaction     electrocatalyst supports     platinum     nitrogen doped graphene     tungsten carbide    

中国铝工业应用新型电极材料的研究与展望

邱竹贤

《中国工程科学》 2001年 第3卷 第5期   页码 50-54

摘要:

介绍了现代铝工业上新近开发研制的几种电极材料,涉及惰性阴极、惰性阳极、双极性电极等;还研制了低温电解质,使电解温度降低到800~900℃。如果惰性电极与低温电解质配合起来应用,则能够明显减少工业铝生产中的物料消耗,节省电能,增大电解槽生产能力,并改善环境状况,可望大幅度降低生产成本。

关键词: 惰性阳极     惰性阴极     SiC绝缘侧壁     低温铝电解    

Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars

Jianguo LIU,Hui CAI,Congcong MEI,Mingxin WANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 905-911 doi: 10.1007/s11783-015-0786-x

摘要: The current study investigated the effects of nano-silicon (Si) and common Si on lead (Pb) toxicity, uptake, translocation, and accumulation in the rice cultivars Yangdao 6 and Yu 44 grown in soil containing two different Pb levels (500 mg·kg and 1000 mg·kg ). The results showed that Si application alleviated the toxic effects of Pb on rice growth. Under soil Pb treatments of 500 and 1000 mg·kg , the biomasses of plants supplied with common Si and nano-Si were 1.8%–5.2% and 3.3%–11.8% higher, respectively, than those of plants with no Si supply (control). Compared to the control, Pb concentrations in rice shoots supplied with common Si and nano-Si were reduced by 14.3%–31.4% and 27.6%–54.0%, respectively. Pb concentrations in rice grains treated with common Si and nano-Si decreased by 21.3%–40.9% and 38.6%–64.8%, respectively. Pb translocation factors (TFs) from roots to shoots decreased by 15.0%–29.3% and 25.6%–50.8%, respectively. The TFs from shoots to grains reduced by 8.3%–13.7% and 15.3%–21.1%, respectively, after Si application. The magnitudes of the effects observed on plants decreased in the following order: nano-Si treatment>common Si treatment and high-grain-Pb-accumulating cultivar (Yangdao 6)>low-grain-Pb-accumulating cultivar (Yu 44) and heavy Pb stress (1000 mg·kg )>moderate Pb stress (500 mg·kg )>no Pb treatment. The results of the study indicate that nano-Si is more efficient than common Si in ameliorating the toxic effects of Pb on rice growth, preventing Pb transfer from rice roots to aboveground parts, and blocking Pb accumulation in rice grains, especially in high-Pb-accumulating rice cultivars and in heavily Pb-polluted soils.

关键词: silicon (Si)     lead (Pb)     rice (Oryza sativa L.)     toxicity     accumulation    

Computer modeling of crystal growth of silicon for solar cells

Lijun LIU, Xin LIU, Zaoyang LI, Koichi KAKIMOTO

《能源前沿(英文)》 2011年 第5卷 第3期   页码 305-312 doi: 10.1007/s11708-011-0155-9

摘要: A computer simulator with a global model of heat transfer during crystal growth of Si for solar cells is developed. The convective, conductive, and radiative heat transfers in the furnace are solved together in a coupled manner using the finite volume method. A three-dimensional (3D) global heat transfer model with 3D features is especially made suitable for any crystal growth, while the requirement for computer resources is kept permissible for engineering applications. A structured/unstructured combined mesh scheme is proposed to improve the efficiency and accuracy of the simulation. A dynamic model for the melt-crystal (mc) interface is developed to predict the phase interface behavior in a crystal growth process. Dynamic models for impurities and precipitates are also incorporated into the simulator. Applications of the computer simulator to Czochralski (CZ) growth processes and directional solidification processes of Si crystals for solar cells are introduced. Some typical results, including the turbulent melt flow in a large-scale crucible of a CZ-Si process, the dynamic behaviors of the mc interface, and the transport and distributions of impurities and precipitates, such as oxygen, carbon, and SiC particles, are presented and discussed. The findings show the importance of computer modeling as an effective tool in the analysis and improvement of crystal growth processes and furnace designs for solar Si material.

关键词: computer modeling     silicon     crystal growth     solar cells    

核辐射技术及其在材料科学领域的应用

傅依备,许云书,黄玮,熊亮萍,高小铃,熊洁

《中国工程科学》 2008年 第10卷 第1期   页码 12-22

摘要: 综述了辐射技术在材料的改性和加工领域的应用研究进展,并详细介绍该单位在采用反应堆辐照技术研制碳化硅(SiC)陶瓷纤维、辐射交联法制备三元乙丙橡胶(EPDM)密封材料、辐射接枝合成偕胺肟型螯合树脂等方面开展的工作

关键词: 核辐射技术     材料科学     碳化硅陶瓷纤维     三元乙丙橡胶     偕胺肟型螯合树脂    

Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite

Omotoyosi H. FAMODIMU, Mark STANFORD, Chike F. ODUOZA, Lijuan ZHANG

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 520-527 doi: 10.1007/s11465-018-0521-y

摘要:

Laser melting of aluminium alloy—AlSi10Mg has increasingly been used to create specialised products in various industrial applications, however, research on utilising laser melting of aluminium matrix composites in replacing specialised parts have been slow on the uptake. This has been attributed to the complexity of the laser melting process, metal/ceramic feedstock for the process and the reaction of the feedstock material to the laser. Thus, an understanding of the process, material microstructure and mechanical properties is important for its adoption as a manufacturing route of aluminium metal matrix composites. The effects of several parameters of the laser melting process on the mechanical blended composite were thus investigated in this research. This included single track formations of the matrix alloy and the composite alloyed with 5% and 10% respectively for their reaction to laser melting and the fabrication of density blocks to investigate the relative density and porosity over different scan speeds. The results from these experiments were utilised in determining a process window in fabricating near-fully dense parts.

关键词: selective laser melting     additive manufacturing     mechanical alloying     powder metallurgy     aluminium metal matrix composite    

Atomistic understanding of interfacial processing mechanism of silicon in water environment: A ReaxFF

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 570-579 doi: 10.1007/s11465-021-0642-6

摘要: The interfacial wear between silicon and amorphous silica in water environment is critical in numerous applications. However, the understanding regarding the micro dynamic process is still unclear due to the limitations of apparatus. Herein, reactive force field simulations are utilized to study the interfacial process between silicon and amorphous silica in water environment, exploring the removal and damage mechanism caused by pressure, velocity, and humidity. Moreover, the reasons for high removal rate under high pressure and high velocity are elucidated from an atomic perspective. Simulation results show that the substrate is highly passivated under high humidity, and the passivation layer could alleviate the contact between the abrasive and the substrate, thus reducing the damage and wear. In addition to more Si-O-Si bridge bonds formed between the abrasive and the substrate, new removal pathways such as multibridge bonds and chain removal appear under high pressure, which cause higher removal rate and severer damage. At a higher velocity, the abrasive can induce extended tribochemical reactions and form more interfacial Si-O-Si bridge bonds, hence increasing removal rate. These results reveal the internal cause of the discrepancy in damage and removal rate under different conditions from an atomic level.

关键词: silicon     ReaxFF     molecular dynamics     friction     damage    

Effect of extrusion temperature on the physical properties of high-silicon aluminum alloy

YANG Fuliang, GAN Weiping, CHEN Zhaoke

《机械工程前沿(英文)》 2007年 第2卷 第1期   页码 120-124 doi: 10.1007/s11465-007-0021-y

摘要: Light-weight high-silicon aluminum alloys are used for electronic packaging in the aviation and space-flight industry. Al-30Si and Al-40Si are fabricated with air-atomization and vacuum-canning hot-extrusion process. The density, thermal conductivity, hermeticity and thermal expansion coefficients of the material are measured, and the relationship between extrusion temperature and properties is obtained. Experimental results show that the density of high-silicon aluminum alloys prepared with this method is as high as 99.64% of the theory density, and increases with elevating extrusion temperature. At the same time, thermal conductivity varies between 104-140 W/(m " K); with the extrusion temperature, thermal expansion coefficient also increases but within 13?10 (at 100?C) and hermeticity of the material is high to 10 order of magnitude.

关键词: coefficient     hermeticity     temperature     relationship     air-atomization    

硅及硅基半导体材料中杂质缺陷和表面的研究

屠海令

《中国工程科学》 2000年 第2卷 第1期   页码 7-17

摘要:

随着超大规模集成电路设计线宽向深亚微米级(<0.5μm)和亚四分之一微米级(<0.25μm)发展,对半导体硅片及其它硅基材料的质量要求越来越高,研究上述材料中各种杂质的行为,控制缺陷类型及数量,提高晶体完整性,降低表面污染和采用缺陷工程的方法改善材料质量显得尤为重要。文章阐述了深亚微米级和亚四分之一微米级集成电路用大直径硅材料中铁、铜金属和氧、氢、氮非金属杂质元素的行为,点缺陷及其衍生缺陷的本质与控制方法,硅片表面形貌、表面污染与检测方法的研究热点。同时还介绍了外延硅、锗硅及绝缘体上硅(SOI)等硅基材料的特性、制备及工艺技术发展趋势,展望了跨世纪期间硅及硅基材料产业发展的技术经济前景。

关键词: 硅片     硅外延片     锗硅     绝缘体上硅     杂质行为     缺陷控制     表面质量    

Kawai型碳化钨多面砧压机的压力突破 Review

Takayuki Ishii, 刘兆东, Tomoo Katsura

《工程(英文)》 2019年 第5卷 第3期   页码 434-440 doi: 10.1016/j.eng.2019.01.013

摘要:

在众多领域中都需要扩大Kawai型碳化钨(tungsten carbide, WC)多面砧压机的压力范围,尤其是在地球科学领域。然而,40年来,在压力产生方面没有取得重大进展。

关键词: 高压     多面砧压机     碳化钨压砧     烧结的金刚石压砧     下地幔    

Laser enhanced gettering of silicon substrates

Daniel CHEN,Matthew EDWARDS,Stuart WENHAM,Malcolm ABBOTT,Brett HALLAM

《能源前沿(英文)》 2017年 第11卷 第1期   页码 23-31 doi: 10.1007/s11708-016-0441-7

摘要: One challenge to the use of lightly-doped, high efficiency emitters on multicrystalline silicon wafers is the poor gettering efficiency of the diffusion processes used to fabricate them. With the photovoltaic industry highly reliant on heavily doped phosphorus diffusions as a source of gettering, the transition to selective emitter structures would require new alternative methods of impurity extraction. In this paper, a novel laser based method for gettering is investigated for its impact on commercially available silicon wafers used in the manufacturing of solar cells. Direct comparisons between laser enhanced gettering (LasEG) and lightly-doped emitter diffusion gettering demonstrate a 45% absolute improvement in bulk minority carrier lifetime when using the laser process. Although grain boundaries can be effective gettering sites in multicrystalline wafers, laser processing can substantially improve the performance of both grain boundary sites and intra-grain regions. This improvement is correlated with a factor of 6 further decrease in interstitial iron concentrations. The removal of such impurities from multicrystalline wafers using the laser process can result in intra-grain enhancements in implied open-circuit voltage of up to 40 mV. In instances where specific dopant profiles are required for a diffusion on one surface of a solar cell, and the diffusion process does not enable effective gettering, LasEG may enable improved gettering during the diffusion process.

关键词: gettering     multicystaline     silicon     impurities     laser doping    

标题 作者 时间 类型 操作

Design and mechanism insight on SiC quantum dots sensitized inverse opal TiO with superior photocatalytic

期刊论文

CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating

Longli BO, Jianbo LIAO, Yucai ZHANG, Xiaohui WANG, Quan YANG

期刊论文

Silicon carbide waste as a source of mixture materials for cement mortar

Zhengwu Jiang, Qiang Ren, Haoxin Li, Qing Chen

期刊论文

Effect of potassium carbonate on catalytic synthesis of calcium carbide at moderate temperature

Dejun SHI, Ke QIAO, Zifeng YAN

期刊论文

Platinum on nitrogen doped graphene and tungsten carbide supports for ammonia electro-oxidation reaction

期刊论文

中国铝工业应用新型电极材料的研究与展望

邱竹贤

期刊论文

Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars

Jianguo LIU,Hui CAI,Congcong MEI,Mingxin WANG

期刊论文

Computer modeling of crystal growth of silicon for solar cells

Lijun LIU, Xin LIU, Zaoyang LI, Koichi KAKIMOTO

期刊论文

核辐射技术及其在材料科学领域的应用

傅依备,许云书,黄玮,熊亮萍,高小铃,熊洁

期刊论文

Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite

Omotoyosi H. FAMODIMU, Mark STANFORD, Chike F. ODUOZA, Lijuan ZHANG

期刊论文

Atomistic understanding of interfacial processing mechanism of silicon in water environment: A ReaxFF

期刊论文

Effect of extrusion temperature on the physical properties of high-silicon aluminum alloy

YANG Fuliang, GAN Weiping, CHEN Zhaoke

期刊论文

硅及硅基半导体材料中杂质缺陷和表面的研究

屠海令

期刊论文

Kawai型碳化钨多面砧压机的压力突破

Takayuki Ishii, 刘兆东, Tomoo Katsura

期刊论文

Laser enhanced gettering of silicon substrates

Daniel CHEN,Matthew EDWARDS,Stuart WENHAM,Malcolm ABBOTT,Brett HALLAM

期刊论文